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Steady three-dimensional convection at high 
Prandtl numbers 
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Three-dimensional solutions are computed describing convection in a layer of a 
Boussinesq fluid of infinite Prandtl number. Rigid boundaries of constant temperature 
are assumed. As many as four physically different solutions are found for a given 
rectangular horizontal periodicity interval. These are two solutions describing 
bimodal convection, and two ' square-pattern ' solutions which correspond to two 
orthogonally superimposed convection rolls of nearly equal amplitude. The Galerkin 
method used in obtaining the steady solutions can also be employed for the 
investigation of their stability. The stability of the bimodal solutions agrees with the 
experimental determination of the stability region by Whithead & Chan (1976). The 
square-pattern solution is unstable in the investigated parameter range, even though 
it exhibits the highest Nusselt number. 

1. Introduction 
Convection in a layer heated from below represents the simplest fluid system that 

exhibits a sequence of transitions leading from two-dimensional laminar to more 
complicated three-dimensional and finally to turbulent states of motion. The 
relatively simple behaviour is primarily a reflection of the horizontal isotropy of the 
fluid layer. It is most strikingly apparent in high-Prandtl-number fluids in which the 
advection of heat is the dominant nonlinear process and the advection of momentum 
is negligible. The transition from two-dimensional to three-dimensional states of 
motion in high-Prandtl-number convection was investigated theoretically by Busse 
(1967). This work indicated that beyond the point of transition a bimodal-form 
convection is realized consisting of a basic roll motion and a superimposed roll motion 
of smaller wavelength and smaller amplitude. The work of Busse (1967) relied on a 
linear stability analysis of the basic two-dimensional rolls in order to  infer properties 
of the three-dimensional state. The goal of this paper is to extend this analysis by 
investigating the fully nonlinear problem of three-dimensional convection. 

For reasons of computational convenience much of the research on high-Rayleigh- 
number convection has focused on two-dimensional solutions. While convection rolls 
represent the physically realized form of convection up to a maximum of about fifteen 
times the critical value R, of the Rayleigh number R in the case of rigid boundaries, 
only three-dimensional forms of convection are found at higher Rayleigh numbers. 
The use of two-dimensional solutions for the investigation of physical properties such 
as the heat transport is thus questionable a t  high Rayleigh numbers. Experimental 
observations do indeed indicate a strong increase of the heat transport beyond the 
transition to bimodal convection (Krishnamurti 1970). Other properties are also 
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affected by the transition to the three-dimensional convection, and qualitatively new 
features may appear in connection with the new dimension of the flow, such as the 
vertical component of vorticity in finite-Prandtl-number fluids. Obviously, a much 
larger parameter space is available for three-dimensional forms of convection, and 
special choices must be made in the study of this parameter space. But even when 
the horizontal periodicity interval, described by two wavenumbers u1 and u2, is fixed, 
solutions of quite distinct form exist, as shown in this paper. Different solutions 
exhibiting the same symmetry and the same periodicity have not been found in the 
two-dimensional case, and were not expected when the computations reported in this 
paper were started. 

In order to distinguish between different solutions a stability analysis is required. 
Only those solutions are physically realizable which are stable with respect to 
arbitrary three-dimensional disturbances. The stability analysis presented in this 
paper does not include the most general disturbances; but it appears to capture all 
physically relevant mechanisms of instability in a high-Prandtl-number fluid and 
yields good agreement with experimental observations. A remarkable finding is that 
the form of convection exhibiting the highest heat transport is unstable. The property 
of maximum heat transport thus does not seem to correlate well with the property 
of stability. 

The paper starts with the mathematical formulation of the problem in $2. Bimodal 
solutions are described in $ 3  and their stability is studied in $4. Square-pattern 
convection and its stability properties are considered in $5.  Some more general 
questions are addressed in the conclusion of the paper ($6). 

2. Mathematical formulation of the problem 
2.1 . Basic equations 

We consider a fluid layer of vertical thickness d and of infinite extent in the horizontal 
dimensions. The temperatures T,  and TI are prescribed a t  the lower and upper 
boundaries respectively. Using the Boussinesq approximation we obtain dimensionless 
equations for the velocity vector v and for the deviation 0 of the temperature 
distribution from the static state in the following form: 

v2V+ke-vn==1 v VV+- , ( 2 . l a )  

v . v  = 0, (2.1 b)  

( *  3 
(2.lc) 

ae 
vZe+Rk.v = v.ve+-.  

at 

The physical parameters d ,  d2/K and (T,--T,)/R have been used as scales for length, 
time and temperature respectively, where K is the thermal diffusivity. The unit 
vector k i s  directed opposite to  the gravity vector g, and Rayleigh and Prandtl 
numbers are defined by 

V 
, P = -  (2.2) 

rg(% - -T,) d3 R =  
VK K ’  

where y is the coefficient of thermal expansion and v is the kinematic viscosity. 
Equation (2.1 b )  and the dynamic pressure n can be eliminated from the problem by 
the introduction of the general representation of a solenoidal vector field 

v = v x (V x A#) + v x k$b = a#+€*. (2.3) 
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Assuming the limit of infinite Prandtl number P ,  we find by taking the vertical 
component of the curl of ( 2 . l a )  that  

V2A2$ = 0. ( 2 . 4 )  

I n  Cartesian coordinates with the z-coordinate in the direction of 1, the operator As 
is defined by A2 = a2/dx2+d2/ay2. Since A 2 ~  must vanish a t  the rigid boundaries, 
(2 .4 )  requires A2@ = 0. This result implies qh = 0 because v is supposed to  be 
bounded a t  infinity. The problem of convection in a fluid of infinite Prandtl number 
is thus reduced to two dependent variables, # and 8. By operating with 1. V x (V x ) 
on ( 2 . S a )  and by rewriting ( 2 . 1 ~ )  we obtain two equations for # and 8 :  

V4A2#-A28 = 0, ( 2 . 5 ~ )  

ae 
at 

V28-RA2# = 6q5 .VB+-. 

The corresponding boundary conditions are 

(2 .5b )  

(2 .6 )  # = - = 8 = 0  a# at z =  _+a. 
aZ 

2.2 .  The steady problem 

Three-dimensional steady solutions of the nonlinear problem ( 2 . 5 ) ,  ( 2 . 6 )  can be 
obtained by expanding # , 8  in terms of systems of orthogonal functions: 

8 = blnm C O S ~ ~ , X  C O S ~ O ~ ~ Y ~ ~ ( Z )  I: binm@inm. (2 .7b )  
lnrn lnrn 

The functions 

and f v ( z )  = sin[vn(z+&)] (2 .8b )  

satisfy the boundary conditions for # and t? respectively. The values /Iv and A,, are 
determined as the positive roots of 

coth$-cot$/3 = 0, tanh+A+tan&A = 0 

and are given in Chandrasekhar (1961, p. 636). The summations in (2 .7 )  run through 
0 < 1,n < m and 1 < m < m. After introducing the representation ( 2 . 7 )  into ( 2 . 5 ) ,  
multiplying ( 2 . 5 ~ )  by #6jk and (2 .5b )  by 8ijk, and averaging the result over the fluid 
layer, a system of algebraic equations for the unknowns alnm, blnm is obtained; 

L k m ( i , j )  aijm +bilk = 0, ( 2 . 9 ~ )  

Ikm( i? j )  btjm + RJk?n( i , j )  aajm + Nfjk lnmppralnm bppr = O. (2 .9b )  

The summation convention applies to any subscript occurring twice in any term. 
Since ( 2 . 9 ~ )  are linear, the unknowns aijk can be expressed in terms Of bi jk  by a simple 
matrix inversion. The nonlinear system of equations ( 2 . 9 b )  can be solved by a 
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Newton-Raphson iteration method. In  order to obtain a problem of finite dimension, 
the system of equations (2 .9b)  must be truncated. This is accomplished by neglecting 
unknowns bilk and equations with 

i + j + k  > N .  (2.10)  

By choosing sufficiently high values of N such that sensitive physical parameters, 
as for example the convective heat transport, do not change by more than a few per 
cent when N is replaced by N - 2  it  is expected that close approximation to the exact 
solution of (2 .5)  can be obtained. The total number of equations is reduced by the 
fact that solutions of physical interest exhibit the symmetry 

(2.11) 

with an analogous relationship for 8. This symmetry translates into the property that 
there exists a subset of solutions of (2 .9)  for which unknowns ail,, b , ,  with odd 
i +j + k vanish. This subset of solutions includes rolls, bimodal convection, square- 
pattern convection and related solutions. But there are other solutions which cannot 
be described by the subset. For instance, the case of a layer of convection rolls confined 
to the lower half of the fluid layer, -4 < z < 0, superimposed by a mirror-symmetric 
second layer of convection rolls is not included in this subset, unless m / a l  or ./a2 is 
chosen as periodicity interval instead of 271/a1 or 2n/a , .  There is no indication that 
the solutions other than those included in the subset i+j+ k = even are physically 
observable. 

The physical quantity of primary interest is the heat transport by convection. It 
can conveniently be described by the Nusselt number, which is the total heat 
transport divided by the heat transport in the case of the static solution, 

(2.12) 

The bar indicates the horizontal average and the summation runs through all even 
integers m. The Nusselt number will be used in the following to characterize different 
sets of steady solutions. 

2.3.  The stability problem 

I n  order to distinguish those steady solutions that are physically realizable a stability 
analysis must be performed. By superimposing arbitrary infinitesimal three- 
dimensional disturbances onto the steady solutions the following equations for the 
disturbance fields $ and 8 are obtained: 

V4A2&- A,& = 0 ,  (2.13) 

v ~ ~ - R A ~ $  = s$.ve+s$.v8+,(?. d 

In  this paper a restricted class of disturbances will be considered which can be 
represented in the form 

$ = cos1alx(dlnm cosna,y+iiiln, sinna,y)g,(z) exp{idy+ut}, ( 2 . 1 4 ~ )  

8= ~ o s l u , x ( 6 ~ ~ ~  cosnu,y+if;lnm sinna,y)f,(z) exp{idy+ut}. (2.14b) 

l m n  

lmn 
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The most general form of disturbances requires a replacement of cos lal x by 

(cos  la,^+&,,^ sin Za,x) exp { i b x )  

in ( 2 . 1 4 )  according to Floquet’s theory. But since all observed instabilities can be 
described by disturbances ( 2 . 1 4 )  and since the x- and y-dependences of the steady 
solutions can be exchanged i t  does not seem necessary to do the much more expensive 
computations based on the most general form of disturbances. 

As in the case of the steady solution a system of algebraic equations for the 
coefficients G l n m ,  d lnm,  S l n m ,  61nm can be obtained from (2.13) : 

L k m ( i , j ) ~ i j m + ~ k m ( i , j ) d i j m  +hijk = 0, ( 2 . 1 5  a)  

~ k m ( i , j ) d i j m - ~ k m ( i , j )  d i jm+bi jk  = 0, ( 2 . 1 5 b )  

- 

- 
l k m ( i , j )  Fijm + T k m ( i > j )  6ijm + R { J k m ( i , j )  Gijm + J k m  ( i , j )  iiijm> 

+ @ L m n p q r  Glmn bpqr  + n&mnpqr a lmn gpqr  + HGLlmnpqr&Lmnbpqr 

+ g i f L l m n p q r a l m n 6 p q r  + a S i j k  = 0,  ( 2 . 1 6 a )  - 
l k m ( i ? j )  bijm - & c m ( i j j )  Sijm + R { r k m ( i > j )  &i jm-Jkm (i~j) d$jm> 

+ R-t f i lmnpqr  d tmnbpqr  + fl&mnpqr a lmn 6 pqr 

-@fclmnpqr G l m n b p q r - H ~ ~ f c l m n p q r a l m n S p q r +  g6ijk = 0. (2 .16b)  

The coefficients Gijk and dijk can be expressed in terms of the coefficients Sijk and 6i jk  

by solving the linear system of equations ( 2 . 1 5 ) .  Equations ( 2 . 1 6 a ,  b )  then become 
a linear homogeneous system of equations with CT as eigenvalue. For a given steady 
solution and a given value of the parameter d the eigenvalue g can be determined 
if the truncation ( 2 . 1 0 )  is used. Only the eigenvalue with maximum real part is of 
interest. When there exists as a function of d an eigenvalue (r with positive real part, 
the steady solution is unstable. If this is not the case, we shall regard the steady 
solution as stable. 

3. Bimodal convection 
Bimodal convection is described by a manifold of solutions bifurcating from 

solutions in the form of two-dimensional rolls. The name bimodal convection 
indicates that  a second roll oriented a t  right angles to the basic roll pattern starts 
to grow a t  the point of transition. Because of the high amplitude of the basic roll 
solution the amplitude of the secondary roll remains relatively small in the range of 
Rayleigh numbers considered in this paper. Physically realized cases of bimodal 
convection are usually characterized by a higher wavenumber a, of the secondary 
roll; but bimodal solutions of (2 .9)  exist even for a, < a,. The property of secondary 
bifurcation is thus the fundamental feature of bimodal convection. It distinguishes 
it from square-pattern convection, which bifurcates from the static state just as roll 
solutions do. In  table 1 Nusselt numbers for typical examples of bimodal convection 
and square-pattern convection are listed for comparison. Although the term square- 
pattern convection was used originally for solutions with a, = a, that  are invariant 
with respect to an interchange of the x- and y-dependences, in this paper solutions 
with CL, ?= a, are referred to as square-pattern convection as long as they evolve 
continuously from the case a,  = a,. In  contrast to bimodal convection they are 
characterized by rather similar values for the coefficients blOm and holm. Throughout 
this section the dominant basic-roll part of the bimodal solution is assumed to be 
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R 

30 x 103 

35 x 103 

40 x 103 

45 x 103 

50 x 103 

60 x 103 

70 x 103 

N 

8 
10 
12 
8 

10 
12 
8 

10 
12 
8 

10 
12 
10 
12 
10 
12 
10 
12 

Bimodal convection, 
a1 = 3.117 

u, = 4.0 a, = 5.0 a2 = 6.0 

3506 3,652 3.502 
3.452 3.587 3.454 
3.434 3563 3438 
3.670 3.896 3.821 
3.597 3.813 3.747 
3.574 3.778 3.717 
3.818 4.106 4074 
3.726 4.0 10 3.984 
3698 3966 3943 
3.952 4289 4.282 
3.842 4.188 4184 
3.887 4.135 4.132 
3.949 4.355 4.356 
3.909 4293 4.294 

44344 4142 - 
4.567 

4315 - - 

4.248 - - 

- - 

Square convection, 
a, = 3.117 

3.702 3.809 
3.637 3.735 
3.6 10 3704 
3.860 3.983 
3.783 3.896 
3.751 3.858 
4.002 4138 
3.914 4.040 
3.876 3995 
4.131 4.278 
4.033 4.171 
3.989 4.1 19 
4.142 4.292 
4.093 4.233 

4.509 

a2 = 3.117 a2 = 410 

- 
- - 

- - 
- - 

2-dimensional 
convection 
a, = 3.117 

3.427 
3410 

- 

- 

3.532 

- 

3640 

- 
3.827 

- 
4.131 

TABLE 1 .  Nusselt number as a function of the Rayleigh number R for 
typical examples of convection solutions 

FIGURE 1. The Nusselt number at R = 26 x lo3 as a function of a,, a2, for bimodal convection and 
y-independent rolls. The bimodal solutions bifurcate from the latter solution in the (Nu, a,, a,) space 
a t  curves determined by the stability analysis of Busse (1967). Thick lines represent computed 
values. thin lines estimated values. 
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4.0 1 I I I I I I l l  

(R-R,) x 10-4 

FIGURE 2 .  The Nusselt number as function of the Rayleigh number for 
roll (a, = 3.117) and two bimodal solutions. 

associated with the wavenumber al. There exist, of course, a corresponding class of 
bimodal solutions for which x- and y-dependences are interchanged. 

The Nusselt number of bimodal convection as a function of al, a, is shown in figure 
1. Only the thick lines in that figure connect actually calculated values; but the 
Nusselt-number surface is sufficiently smooth that an extrapolation from the 
computed values seems justified. Most of the computed values used in the figure have 
been listed in table 2 .  The values a, = a: a t  which the bimodal solution reduces to 
the two-dimensional roll solution have been obtained from the stability analysis of 
Busse (1967). The values a: represent the cases for which the growth rates of 
disturbances of two-dimensional rolls vanish. Numerical results not published in 
Busse (1967) have been used for the determination of a:. 

As expected, bimodal convection exhibits a heat transport exceeding that of the 
corresponding two-dimensional solution. Depending on the kind of bimodal 
convection realized the change of slope in the heat-transport curve at the transition 
to bimodal convection is more or less pronounced as shown in figure 2.  The reason 
for the increased heat transport is not clearly evident from the form of the solution. 
Lines of constant vertical velocity in the midplane of the layer, streamlines and 
isotherms are shown in figure 3. It had been expected that the streamlines of the 
short-wavelength roll component of bimodal convection would penetrate strongly 
into the thermal boundary layers of z = ++. Only a rather weak effect of this nature 
is evident in the figure. 

The large number of parameters and the expense of computing prohibit a much 
more detailed investigation of the manifold of solutions describing bimodal convec- 
tion. Most computations have been done with N = 8, which yields Nusselt numbers 
within 2 or 3 % of the exact value for R < 3 x lo4 if results obtained for N = 10 are 
used as a guide. For higher Rayleigh numbers truncation parameters N = 10 and 12 
have been used as shown in table 1 .  Because of the more rapidly increasing number 
of higher harmonics with N ,  three-dimensional solutions appear to converge much 
faster than two-dimensional solutions a t  the same value of N .  Problems of convergence 
have restricted the number of computations of steady bimodal convection in some 
cases. It has not been possible, for example, to extend the wavenumber a, in the case 
R = 26 x lo3, u1 = 4 2  beyond the interval 2.6 5 a, 5 4.5. At both ends of this 
interval the Nusselt number tends to increase sharply and the coefficients b,,, grow 
rapidly in comparison with the coefficients b,,,. This suggests that the surface of 
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FIGURE 3. Lines of constant vertical velocity vz in the plane z = 0 (negative values are dashed) are 
shown in upper left graph. Lines of constant az q5 in the plane y = 0 (A-B) and lines of constant 

q5 in the plane z = n/al (B-C) are shown in the two middle graphs. The corresponding isotherms 
are shown in the two lower graphs. 

bimodal solution in the (Nu, al, as) parameter space may bend over to  join the upper 
surface of square-pattern convection which is discussed in $ 5 .  A different numerical 
scheme will be required to verify this hypothesis. 

4. Stability of bimodal convection 
All two-dimensional solutions shown in figure 1 are unstable since there always 

exists a disturbance of bimodal nature which is growing when the Rayleigh number 
exceeds 22600 according to  the stability theory of Busse (1967). But the bimodal 
solutions are not always stable either. The stability of bimodal convection has been 
investigated experimentally in a high-Prandtl-number fluid by Whitehead & Chan 
(1976). When the wavenumber ct2 was controlled by appropriate initial conditions a t  
the onset of transition to bimodal convection, these authors found that sometimes 
an instability occurred which replaced the bimodal pattern by a pattern with a 
different a2 while the wavenumber a, of the basic rolls remained unchanged. 

Motivated by the experimental study, the stability of bimodal solutions with 
respect to  disturbances of the form (2.14) has been investigated. A typical stability 
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3 . 0 ~ 1 0 4 1  I \ I  I I I I I I I I I I I I I I I I 1 

R 

2 x 1 0 4  I I I I I I I I I I I I I I 

3.7 4.1 4.5 4.9 5.3 5.6 

a2 

FIGURE 4. Stability of bimodal solutions with 0 1 ~  = 3.1 17 as a function of R and az. Stable solutions 
(0) are founded by the solid curve. Solutions indicated by a dot ( . )  are unstable with respect to 
disturbances introducing wavenumbers a2 within the doedashed lines. Points at which a bimodal 
solution could not be obtained are denoted by ( x ). No bimodal solutions have been found outside 
the dashed curve determined from the stability computations of Busse (1967). (The single exception 
at R = 24 x lo3 lies outside the dashed curve at a distance which is within the uncertainity of the 
different numerical schemes.) 

region is shown in figure 4. The outer parabolically shaped curve encloses the region 
of steady bimodal solutions. The curve representing values a: as a function of the 
Rayleigh number has been derived from unpublished results of the analysis described 
by Busse (1967). The inner parabolically shaped curve encloses the region of stable 
steady bimodal solutions. Growing disturbances outside the latter curve are charac- 
terized by finite values of d,  which indicates the tendency of the disturbances to 
change the wavenumber a,. Indeed the values of a, + d in the case of the left region 
of instability and a,-d in the case of the region of instability on the right side 
fall within the dash-dotted lines at the centre of the stability region. The instability 
is thus analogous to the Eckhaus instability which limits the region of stable rolls 
near the critical Rayleigh number for onset of convection. 

A comparison with the stability diagram determined by Whitehead & Chan for the 
case a, = 2-5 in a convection layer with P = 126 shows a close resemblance. The width 
of the region of stable values a2 is about the same, and the preferred wavenumber 
a, that  is attained as a result of instabilities shows an increase with increasing 
Rayleigh number. Because of the finite conductivity of the boundaries used in the 
experiment, the observed wavenumbers tend to be smaller than those predicted by 
the theory based on infinitely conducting boundaries. This effect is caused by the 
increased region in the z-direction over which temperature fluctuations exist with 
significant amplitude. It can thus be expected that quantitative agreement will be 
obtained if theory and experiment use identical boundary conditions. Since the 
experiments did not indicate any other mechanism of instability, it does not seem 
worthwhile to embark on a more complete analysis of the stability of bimodal 
convection than that described by the ansatz (2.14). While in principle this ansatz 
permits the analysis of the oscillatory instability of bimodal convection, such an 
instability has not been found, in agreement with the experiment observation that 
the Rayleigh number for the onset of this instability increases strongly with the 
Prandtl number (Busse & Whitehead 1974). 
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5. Square-pattern convection 
Square-pattern convection plays an enigmatic role in the science of convection. It 

has been predicted as a stable form of convection in the case of nearly insulating 
boundaries of the convection layer (Busse & Riahi 1980). Observations are not 
available for this limit. Instead square-pattern convection has been observed in cases 
of doubly diffusive convection (Shirtcliffe & Turner 1970) and in high-Prandtl-number 
convection with strongly temperature-dependent viscosity (Oliver 1980). I n  high- 
Prandtl-number experiments with constant viscosity there is some evidence that 
square-pattern convection becomes stable when the Rayleigh number exceeds lo5 by 
a considerable margin (Whitehead & Parsons 1978). All these results are not in conflict 
with the findings of the present theoretical analysis, since all square-pattern solutions 
obtained here turned out to be unstable with respect to infinitesimal disturbances. 

The instability of square-pattern solutions is surprising since their heat transport 
exceeds that of rolls and even that of most bimodal solutions, as is shown in figure 
5. Near the critical Rayleigh number the heat transport by square-pattern convection 
is relatively low, in agreement with the small-amplitude analysis of Schluter, Lortz 
& Busse (1965). But a t  Rayleigh numbers of order 5 x lo3 it begins to exceed the heat 
transport by rolls and the asymptotic power lnw for the NusseltrRayleigh-number 
relationship appears to be distinctly different. 

As pointed out earlier, the manifold of square-pattern solutions include solutions 
for which a, and a2 are different as long as the corresponding solutions evolve 
smoothly from the special case a, = u2. Since the x- and y-dependences can be 
interchanged, there are two surfaces of square-pattern solutions which intersect a t  
the plane a, = a2 in the (Nu,  a,, a2) parameter space as shown in figure 6. Convergence 
problems in the use of the Newton-Raphson iteration scheme have prevented us from 
extending the surfaces much further, although not as determined an effort has been 
made as in the case of bimodal convection. Selected numerical values used in drawing 
figure 6 have been listed in table 3. 

The stability analysis of square-pattern solutions is relatively simple since the most 
strongly growing disturbances appear to  be characterized by d = 0. This indicates 
that  the instability does not change the periodicities of the solution and that a 
bimodal form of convection or roll convection for R 5 22600 is approached as the 
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FIGURE 6. The two intersecting surfaces of Nusselt numbers for square-pattern convection at 
R = 26 x lo3. Only the thick lines have been computed. 

disturbances grow to finite amplitude. The growth rates of disturbances are not very 
large and it seems likely that an additional physical effect or higher Rayleigh numbers 
than those achieved in the present computations could lead to a regime of stable 
square-pattern convection. 

6. Concluding remarks 
The most surprising result of the computations reported in this paper is the 

existence of three three-dimensional solutions describing convection in a square 
periodicity interval a, = a2 and four such solutions for a1 =!= a,. In  the case a, = a, 
the two bimodal solutions can be transformed into each other by interchanging the 
x- and y-dependences, while the square-pattern solution is symmetric in x and y. For 
a1 a, two square-pattern solutions evolve from the single solution of the case 
a, = a, as shown in figure 6. It is not unlikely that the surfaces of the two manifolds 
of bimodal solution become connected with the two manifolds of square-pattern 
solutions as Ja,-a2J increases in the (Nu,  a,, a,) space. The topological properties of 
hypersurfaces of manifolds of solutions in an appropriate parameter space have 
received little attention so far, and extensions of the solutions described in this paper 
could eventually provide an interesting example for the study of those hypersurfaces. 

The bifurcation of bimodal solutions from the two-dimensional solution is similar 
in many respects to the bifurcation of the two-dimensional solution from the static 
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solution. I n  both cases new spatial degrees of freedom are occupied by the 
bifurcating solutions or, in other words, symmetries of horizontal translations are 
broken. As a consequence of this property the heat transport exhibits a kink at the 
point of transition and the range of the wavenumbers accessible beyond the lowest 
point of truncation grows quadratically with the excess of the Rayleigh number over 
the critical value. The sideband mechanism of instability restricts the a2 region of 
stable bimodal solutions near the Rayleigh number of onset by the same factor 3-i 
as in the case of the Eckhaus instability of two-dimensional rolls (Busse 1971). 
Instabilities involving three spatial dimensions occur differently in the case of rolls 
and bimodal convection. But similarities are still apparent as has been emphasized 
in the case of the oscillatory instability (Busse & Whitehead 1974). 

The fact that  square-pattern solutions are unstable with respect to disturbances 
growing at a relatively low rate suggests that  appropriate changes in the physical 
parameters of the problem may lead to a physical realization of these solutions. 
Temperature dependence of the viscosity is a possibility suggested by experimental 
observations (Oliver 1980). Computations extending the present analysis to that case 
are presently under preparation. The properties determining the relative stability of 
rolls and square-pattern convection or of bimodal and square pattern convection are 
not obvious. The convective heat transport appears to  have little influence on the 
relative stability, as the results of this paper have shown. 
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